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Summary. Metric tensor fields computed from solution data for adaptation prob-
lems are not always well-behaved. They may contain noise, high gradients in desired
directionality and anisotropy, global undulations in directionality, and other defects
that pose challenges for meshing algorithms. We focus on the application of filters
to address some of these defects through noise removal and a form of fairing. At the
same time, it is desirable to retain characteristics of the original metric data. These
methods are demonstrated on metric data from a high-speed, 2D flow problem.

1 Introduction

Mesh adaptation is a process that can be employed in domains such as com-
putational fluid dynamics to improve solution accuracy, convergence, and res-
olution of various physical phenomena. Adaptation involves local mesh modi-
fication [1] or complete remeshing of the domain according to a posteriori re-
quirements computed from solution-based error estimates. Such requirements
consist of preferred mesh directionality and anisotropy, and are commonly
represented as Riemannian metric tensors. There are many formulations that
produce metric tensors from a solution field; here we consider gradient-based
and adjoint-based methods that rely on Hessian information from a scalar
solution variable to determine directionality and aspect ratio, which is then
combined with a scalar intensity that is specific to each method [2, 1].

Partially due to the numerical approximation involved, solution-based met-
rics from these methods are not well-behaved. Simple observations of the re-
sulting metrics (refer to Figure 1) reveal two types of issues:

• Isolated, local noise: individual nodal metrics may be outliers in terms of
directionality and/or anisotropy when compared to their local neighbor-
hood. These also lead to a high anisotropy or directionality gradient when
interpolating the metrics. Several anisotropy outliers can be seen in Fig-
ure 1a. The method of visualization is a combination of tensor ellipses and
hedgehogs (arrows) that indicate the local directionality and sizes along
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those directions. Directions corresponding to the larger size of the two are
red, the others are blue.

• Global undulations in directionality: as seen in Figure 1b, metric stream-
lines in proximity to a bow shock for a symmetric airfoil problem are wavy.
Metric streamlines are similar to flow streamlines, but instead follow the
directions (eigenvectors of the metric tensor) corresponding to either the
larger or smaller size. A consistent color mapping scheme is employed.

(a) Ellipses (zoomed in) (b) Metric streamlines

Fig. 1. Noise and undulations in solution-based metric data

These two types of issues can cause difficulties for meshers in terms of
quality, computational effort, and suitability of the resulting mesh for anal-
ysis. Therefore, we seek methods that can remove aspect-ratio, scaling, and
directionality outliers, preserve strong features in the metric field, and fair
directionality trends.

These methods are applied in the context of a metric-streamline based
mesher (that is also used for visualization purposes) [3, 4] as well as a packing-
based approach [5].

2 Metric Conditioning

Median filtering is a traditional image processing technique that is effective
at removing noise while preserving important image features. When applied
to a scalar grayscale image, for example, one replaces a grayscale pixel with
the median value of the pixels in its neighborhood. In [6], Welk et al. extend
the definition of a median to tensors and present two variants of the median
filter for tensor-valued images.

The typical algorithm for computing a median of a set of scalar values is
to sort them by value and then select the middle value. It is not as straight-
forward to sort SPD tensor data in this manner, so Welk et al. consider an
alternative definition: the median element of a set of values is the value that
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has a minimum summed distance to the other elements. This can be stated
as the following for a set of values X = {x1, . . . , xN}:

xmedian := arg min
x∈X

N∑
j=1

||x− xj || , (1)

where xmedian is the median value, x is restricted to the set X of elements
xj . For scalar values, the absolute value is the same as the L1 norm and is
consistent with the sorting method for the median.

We now discuss specific choices for the filtering of solution-based metrics.
Out of several possible norms, the Frobenius, or Euclidean, norm has been
selected for the metric norm in Equation (1). It has the ideal property of being
a tensor invariant. Unlike diffusion tensor data, metric data is non-uniformly
sampled over space. To compensate for this, the local neighborhood around a
node can be built by including all neighbors within a certain radius. Neigh-
borhood construction has been designed to satisfy criteria such as minimum
number of layers (n-ring), a neighborhood radius, and a minimum number of
neighbors. Furthermore, a Gaussian distance weighting scheme is applied to
the terms of the summation in Equation (1) to smoothly factor in distance be-
tween the metric samples in a neighborhood. This yields the following median
around a metric for a set of metrics M = {M1, . . . ,MN} at corresponding
positions X = {x1, . . . , xN}:

Mmedian := arg min
m∈M

( N∑
i

ωi

)−1 N∑
i

ωi ||m−Mi||2

 (2)

ωi = exp

(
−
||x− xi||22

2σ2

)

σ2 =
1

N

N∑
i

||x− xi||22 ,

where m is a dummy variable, and the Gaussian weights ωi bias the com-
putation with respect to a metric at position x. This is also reflected in the
variance, σ2. Technically, the sets M and X may contain the metric that is
current being filtered, i.e.,M at x. A continuous extension is also used, where
the restriction that m ∈ M is relaxed; this allows the median to take any
symmetric positive-definite value (new restriction: m ∈ S+2×2). In the present
work, this is solved using gradient descent with adaptive step size control and
the weighted mean of the metrics in M as an initial guess.

3 Results

The discrete and continuous median filters are applied using Jacobi-style it-
erations over a specified number of global passes over the domain. Figure 2
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shows the effects on the metric streamlines after one and ten passes of me-
dian filtering on the raw metrics from Figure 1 for a 1-ring neighborhood. In
practice, filtering is applied conservatively (one pass of discrete median) to
produce a rectified field for length measurements. Then, a more generous ap-
plication (ten passes of continuous median filtering) is used to generate a field
with faired directionality. A family of filtered fields can be produced in this
manner for consumption by a meshing algorithm. Finally, Figure 3 provides
a global perspective of the effects on directionality.

(a) One pass of continuous median (b) One pass of continuous median
(zoomed in)

(c) Ten passes of continuous median (d) Ten passes of continuous median
(zoomed in)

Fig. 2. Gaussian weighted median filtering of solution-based metric fields

We apply the methods described in the present work to a supersonic,
steady flow over a 0012 airfoil. The airfoil has a reference length of 1, and
is embedded in a circular domain with a radius of 20 chord-lengths. The
parameters specified for the laminar, viscous analysis are as follows: Mach =
2, Re = 1 × 106, and the angle of attack, α = 2◦. Using the FUN3D solver
[7], the solutions are performed according a schedule that starts off with first-
order accurate iterations, followed by second-order accurate iterations during
which a flux limiter is enabled. The inviscid flux construction scheme is LDFSS,
and the hVanAlbada flux limiter is used. The initial mesh for these adaptation
iterations was prepared by running eight adaptation iterations with proposed
method on an initial unadapted quad mesh with Re = 1×103. Filtered metrics
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(a) Raw metrics (b) One pass continuous
median

(c) Ten passes continuous
median

Fig. 3. Global view of metric streamlines after filtering

are passed to a streamline and rectangular cell packing mesher that produces
the mesh and solution (Mach plot) in Figure 4, demonstrating anisotropic
capture of the shock and wake phenomena without the waviness observed
in Figure 1b and without washing away or distorting strong features as is
possible with simple smoothing.

(a) Iteration 11 mesh (b) Iteration 11 solution

Fig. 4. Adapted meshes and Mach plots for the 0012 airfoil (Iteration 11)

4 Conclusion

A method for conditioning solution-based metric tensor data for adaptation
problems was presented. Discrete and continuous variants of a tensor-valued
Median filter were used to denoise and fair a metric field while preserving
some characteristics of the original metric field. The method was applied to
data from a viscous, supersonic flow problem and applied to an adaptation
process to capture strong flow features.
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